
Convolutional Neural Networks I
CS 4391 Introduction to Computer Vision

Professor Yapeng Tian
Department of Computer Science

Slides borrowed from Professor Yu Xiang



Visual Perception vs. Computational Perception

2

Image

Neural 
Network

High-level information
• Depth
• Motion
• Object classes
• Object poses
• Etc.



Mathematic Models 

Try to model the human brain with computational models, e.g., neural 
networks

3

Image Object class



Mathematic Models 

What is the form of the function              ?
• No idea!
• Concatenate simple functions (neurons)

4

Dog



Neural Network: Concatenation of functions

5

Linear score function:

2-layer Neural Network

x hW1 sW2

3072 100 10

Non-linearity



Activation Functions

6

rectified linear unit (ReLU)
max(0,x)

2-layer Neural Network

Introduce non-linearity to the network



Activation Functions

7

Sigmoid

ReLU    max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU Exponential 
Linear Unit

tanh    tanh(x)

Hyperbolic tangent



Fully Connected Layer

8



Fully Connected Layer

What is the drawback of only using fully connected layers?

Consider an image with 640 x 480
• x is with dimension 307,200
• The weight matrix of the fully connect layer is too large

9



Convolutional Layers

Consist of convolutional filters

Share weights among different image locations

10

Gaussian 
Filter Learn the weights!



Convolutional Neural Networks

11

[LeNet-5, LeCun 1980]



Convolutional Neural Networks

12

Input image

Convolutional
layer

Fully connected layer

Output vector

ReLU
layer

Pooling
layer

…

(translation invariant)



32

32

3

Convolutional Layer

32x32x3 image

width

height

depth

13



32

32

3

Convolutional Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

14



32

32

3

Convolutional Layer

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

15



32

32

3

Convolutional Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

16



7

7

A closer look at spatial dimensions:

17

7x7 input (spatially)
assume 3x3 filter, with stride 1



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

18



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

19



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

20



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

21



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

22



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

23



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

24



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

25



7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

26



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

27



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

28



7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

29

Output size:
(N - F) / stride + 1



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

30



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

31



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.

32



N

N
F

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33

33



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

0 0 0 0 0 0

0

0

0

0

34



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

35



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

36



A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

37



32

32

3

Convolutional Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

38



32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

39



Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters

40



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters

28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

41



Input image

Convolutional
layer

Fully connected layer

Output vector

Convolutional Neural Networks

42

ReLU
layer

Pooling
layer

…



Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:

43



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

44



Input image

Fully connected layer

Output
vector

Training: back-propotate errors

GT 
vector

45

Convolutional
layer

ReLU
layer

Pooling
layer

…



46



Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

47



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

48



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

49



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

50



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

51



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

52



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

53



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

54



Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

55



56

56

Case Study: VGGNet [Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
->
7.3% top 5 error



57

57

INPUT: [224x224x3]       memory:  224*224*3=150K params: 0
CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory:  112*112*64=800K params: 0
CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory:  56*56*128=400K params: 0
CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory:  28*28*256=200K params: 0
CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory:  14*14*512=100K params: 0
CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory:  7*7*512=25K params: 0
FC: [1x1x4096] memory:  4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory:  4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory:  1000 params: 4096*1000 = 4,096,000 (not counting biases)

Case Study: VGGNet [Simonyan and Zisserman, 2014]



Case Study: GoogLeNet [Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

58



Case Study: GoogLeNet

Fun features:

- Only 5 million params!
(Removes FC layers 
completely)

Compared to AlexNet:
- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

59



Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

60

LeNet
(5 layers) AlexNet

(8 layers)
VGGNet

(19 layers)
GoogleNet ResNet

(152 layers)

2-3 weeks of 
training on 8 
GPU machine

at runtime: 
faster than a 
VGGNet! 
(even though 
it has 8x more 
layers)



Case Study: ResNet [He et al., 2015]

61



(slide from Kaiming He)
62



Further Reading

Stanford CS231n, lecture 5, Convolutional Neural Networks 
http://cs231n.stanford.edu/schedule.html
Deep learning with PyTorch 
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
AlexNet (2012): 
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html
Vgg16 (2014): https://arxiv.org/abs/1409.1556
GoogleNet (2014): https://arxiv.org/abs/1409.4842
ResNet (2015): https://arxiv.org/abs/1512.03385

63

http://cs231n.stanford.edu/schedule.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385

